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Abstract  One problem facing a road authority 1s to prioritise and schedule road projects for future years, fitting the idemtified
projects into a timetable. Since the combination space for a project timetable is extremely large, an efficient search procedure is
needed., This problem has three parts: applying selection criteria, applying constraints (budget, linkages between projects, ete.), and
using an approach to find the optimum sclution. The benefit-cost ratio in benefit-cost analysis or the weighted score in
multicriteria analysis has been used to rank road projects. However, this method cannot find an optimum solution, nor can it cope
with constraints imposed by linkages between projects. Goal programming (GFP) can represent both multiple eriteria and constraints
which link projects, but the GP model is based on the assumption that project effects are divisible, so that a partially finished
project will contribute proportionally to the benefits. In practice, this assumption is valid for upgrading projects (Type ! projects)
bul not for new road links (Type 2 projects). This paper discusses a genetic algorithm (GA) to deal effeclively with Type 1 and
Type 2 projects. A siring of integers is used o represent project priorities in a GA ndividual, Budget constrainis are imposed in the
process to map ihe project priority matrix onto a road project timetable. Constraints imposed by linkages between projects are
applied by using a penaity function. In the case of ali Type [ projects, the GA finds nearly the same project timetable as obtained
by GP. When projects are differcntiated inte Type | and Type 2 projects, the GA finds a project imetable that is different from that

P

in the case of ali Type | projects.

1, INTRODUCTION

Onpe problem facing a road authority is to prioritise a set of
identified road projects, and then schedule these projects fora
period of years into the future. In this process, the road
authority normally tries lo achieve maximum investment
effectiveness, subject to its budget in that schedule period and
other conditions. Practically, the way of dealing with this
problem varies among road authorities, For example, some
road authorities prioritise and schedule road projects at lwo
sequential decision-making stages, but the others directly
schedule toad projects without pricritising them (TRB
11978)). Theoretically, the final result of this process is a
constratned timetable for the identified road projects, no matter
how a road authority does this job.

A project timetable is a combination of projects for a schedule
peticd. The number potential combinations can be determined
as follows, If p denotes the number ol identified road projects,
then for any one year in a schedule period, the number of
possible project combinations is 2°. Il p is equal to 35, the
number of possible project combinations for one year is
3.435973837x10"™. A schedule period covers more than one
yeat, so that the number of possible timetables is more than
3.435973837x 10",

Because the number of possible timetables is extremely large,
an etficient method for scarching for the optimurn timetable
is needed.

This paper first gives an overview of the constituents of the
problem, then discusses a genetic algorithm (GA) approach o

prioritise and schedule road projects, and finally presents the
results of applying the GA approach,

2. AN OVERVIEW

This problem has three parts: crileria for prioritising and
scheduling road projects, constraints on  prioritising  and
scheduling road projects, and an approach to scarching for the
optimum solution,

There can be one or more criteria used for prioritising and
scheduling road projects, The selection of criteria depends on
actual applications. Traditionally, road authaorities have used
the benefit-cost ratio as the only criterion, but recently road
authorities have selected more and more criteria,

There are a variety of constraints imposed on prioritising and
schedufing road projects. The budget is the most common
constraint, restricling the maximum expenditure within a
whole schedule period or by individual years in the schedule
period (Fumphrey [1981]). Operationally, there are canstrainis
that specify linkages between some projects (for example, one
project cannot be completed before another project.). These
constraints are catled operational constraints.

Two techniques have been used to model prioritising and
scheduling road projects: ranking and optimisation (Humphrey
[1981] and Taplin et al. [19951).

A ranking  approach ranks or prioritises identified road
projects in descending order by & measure, such as the henefit-
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cost ratio in Cost-benefit Analysis (CBA) or the score in
Multicriteria Analysis (MCA). Then, the ranking approach
successively includes the road projects into a project fimetable
until the budget in the schedule period is exhausted. One
drawback of this technique is that it cannot cope with
operational constraints. Furthermore, the project limetable
obtained by this technique is not necessarily the optimum
project timetable.

Linear programming (LP) with one or more objectives has
been used for scheduling road projects (Melinyshyn et al
[1973] and Tapiin et al. {19941y The LP technique directly
produces the optimum timelable for a set of ienlified road
projects. In linear programming, it is casy io impose budget
constraints, and some but not all operational constraints.

The LP technique is superior to ranking in that LP can come
up with the optimum solution, and is more powerful in
coping with some operational constraints.

The following is an example of applying linear programming
with multiple objectives, that is, geal programming (GP). w
scheduie road projects. In this example, 35 road projects are
be scheduled for 10 vears, 17 criteria are identified and their
measures for each project are predetermined. Budgets for 10
years are projected and it is required that the 10th project be
not completed before the 11th project. The aspiration value for
each criterion (goal} is alse predetermined.

Minimise:
()

Subject to:

m s

gzwbjixikﬁ'y! =g, (!:i]7> {2)
Sex, £m, (=110} (3)
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%, 20 (j=1..35, k=1..10)  (6)

Where:

4, = the weight applied to the ith goal

y, = the amount deviated {rom the ith goal

g; = the aspiration value of therith goal

Xy, = the proportion of project | constructed in year k
r = discount rate

by; = the contribution to goal i made by project j

¢, = the cost of project j

my = the budget availabie for year k

The underiying construct is the time value of capital. This
technique is based on the assumption that project effects are
divisible, so that a partially finished project will contribute
proportienally to the benefits, as indicated by (2).

Because the effects of some criteria used for scheduling road
projects are traffic dependent. the above assumption is valid
for upgrading road links (Type 1 projects} but not for new road
links (Type 2 projects). An upgrading road link project is
implemented on its existing alignment, and when it is being
implemented, the link is partially open 1o traffic. Once a part
of the project is finished, it can immediately be open 1o waffic
and have a proportional effect. On the other hand, in most
cases a new road link will not serve traffic umtil it is finished,
that is, before its completion it makes noe contribution 1o the
network.

Taking inlo account the difference between Type | and Type 2
projects in the divisibility of project effects, 1t is more
accurate Lo represent (2) as the following.

SO,y =g (=117 (D
el
fm 1
i =T r.}\.k_”b“Kw {for Type ! projects}
g, =1 ®)
(14 r)“v” b{i (for Type 2 projects)

f, = the year in which project j is finished
Gy = the discounted contribution to ith goal made by
project j

Tmposing constraints is the only way in lincar programming
to apply dilferent conditions and requirements. i is basd Lo
express the conditions in {8) by constraints. Therefore, it is
difficult for linear programming to cope with the siuation in
which road projects arc differentiated into Type | #nd Type 2
projects, and another appreach is needed.

The remaining parts of this paper discuss the application of a
genetic algorithm (GA} to deal effectively with this situation,
and present the results of some experiments using the GAL

3. APPLICATION OF A GENETIC ALGORITHEM

Genetic algorithms (GAs) are a mothod developed recently.
For searching in a lingar system, GAs are not as efficient as
LP, but are more flexible than LI in that GAs can cope with
a variety of conditions and requitements, such as the
conditions in (8) above, This flexibility of GAs brings the
modelling of some complex systems closer to the actual
situations.



3.1 Genetic Algorithm Steps

An individual in a GA represents one solution of a problem.
Anindividual is a string of either binary digits {0 or 1}, or real
numbers, depending on actual applications. A group of
individuals forms a generation, which is a subset of the
solution space, and the number of individuals in each
gencration is the population size. A GA finds the optimal
solution by simulating a process in which GA individuals
evolve from generation to generation.

Step 1:The process starts with randomly injtalising the
individaals in the first generation, that is, assigning & vaiue to
each digit or number for every individual. The values assigned
are in the domain range for each digit or number.

Step 2:This step decodes and evaluates the information or the
splution contained in each individual, The evaluated value of
an individual is called the fitness of the individual, and the
bigger (for a maximisation problem) or the smaller {for a
minimisation problem) the value, the fitter the individual.

Step 3:This step applies a reproduction scheme to Individuals
in the existing generation {parents) to reproduce the next
generation (offspring). There are many reproduction schemes,
such as roplette wheel selection, tournament selection, “steady
staie” selection and so on (Goldberg et. al. [1991]). Generally,
the fitter an individual in a parent generation, the more likely
that the individual gels ome or more copies in the next
offspring generation. The population size of an offspring
generation equals the population size of the previous parent
generation.

Step 4:After reproduction,  various  genetic  operalors  are
applied to the individuals in an offspring generation.
Crossover and muiation operators are two the most common
operators. The {unction of a crossover operator 15 1o partly
swap information between a pair of individuals to generate a
new pair of individuals. The pair of individuals are chosen
randomly, and the ilerations of applying a crossover operalor
depend on a predetermined probability and the population
size. Mutation operator mutates the value of a digit or a
number in an individoal, w produce a new individual, The
mutaied individual and the position of the digit or the number
are chosen randomly. The iterations for mutation depend on a
predetermined probability, the population size, and the number
of digits or numbers in an individual.

Step 2 to Step 4 are repeated until a closure condition is
satisfied. Normally the closure condition is a given number of
generations.,

There are several methods o tmpose constraints in GAs. The
first one is to penalise the fitness of an infeasible individual
that violates the constraints. The second one is to fix
infeasible individuals according to the constraints, The third
one is to throw away infeasible individuals and then generate
feasible individuals to make up the population size. The last
one is to always generate feasible individuals by a speciaily
designed process or genetic operators, such as crossover and

mutation (Michalewicz [19921). The first three methods are
applied between applying genctic operators and evaluating
individuals. The last one can be in any step, depending on
actual applications.

If a GA is properly tuned, the fittest individual will converge
on the optimum or a near optimum solution. The power of a
GA insearch les in ity ability to transfer useful information
from generation (o generation,

3.2 Representing the Solution of the Problem

One issue of applying GAs to prioritising and scheduling road
projects is to represent the problem by a GA individual, This
issuc can be addressed by analysing the decision-making
process of a road authority,

A road authority first assigns prioritics on identified road
projects, and then fits these projects into a budget plan, to
produce a road project timetable. This process can be expressed
by (9).

n R R, Iy
Budget Ko Ry By Ky,
Y l\ "y . - . . - .

(p‘ P} Pu Pp) constramt 3 (9)
N : X\]l Xr;: qu X:;v
WA B A, .

project priority project timetable

Where:
P, = (he code number of a project of which the ranking
number or priority number is u
p = the number of projects
%4 = the proportion of projest ¢ (i.e. the code number

of the project is g} built in year w
y = the number of schedule vears

Naturatly, a GA individual can use a string of integers to
represent the matrix of project priority i (9). For each
individual, the value of an infeger is a project code number,
and the position of the integer in the individual is the priority
number of the project. For example, a GA individual for 10
road projects:

(3516410897 2).

In this GA individual, project 3 has the highest priority
aumber, 1, and project 2 has the lowest priority number, 10,

3.3 Applying Constraints

In this application, the budget constraint is applied by a
process that maps a matrix of project priorities or a GA
individual onto a project timetable. Like the simple ranking
method, this process sequentially selects projects inte a
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timetable until all the budget is used up, and then drops the
remaining projects (that is, in the matrix of project timetable
in (9) all the elements for the dropped projects are zero).
Although the dropped projects are not included into the
timetable, they still remain in the GA individual, so that all
the information on the GA individual can be transferred to the
next generation of GA individuals. Besides. for a selected
project, say project j. the year {s; in which the project is
staried, and the year in which the project is finished (£), am
determined in the mapping process. Therefore, in this context,
equation {8} can be modified as equation (10).

I I

Em %, Uor Type | projects)
W b {for Type 2 projects)

The way o imposc an operational constraint depends on the
definitien of the constraint. This paper just discusses one type
of operational constraint: one project (say project j1) cannot
be completed before another project (say project j2). In the
GA, this constraint can be expressed by

-z G (1h
Inequality (11) is different from inequality (4) in two aspects.
One aspect is that 1o construct the constraint inequality (11)
uses the years im which projects in guestion are finished, rather
than the yearly construction proportions of these projects.
Another aspect is that inequality (11) is just one inequality,
while inequality (4) is the general form of a group of
inequalities.

To impose such an operational constraint {say constraint ¢} a
penalty function @, can be used in a way:
& = (, ~ Ly (when £, < 1) (12)
) f (whenf, 2f)

Therefore, after operational constraints having been applied,
the objective function (1) becomes
BT L

Z&iy,%—'}"zqa (13

i=1
Where:

v = predetermined penalty coefficient
m= number of operational constraints

In general, the process to calculate the fitness function (that
is, objective function) for a GA individual in this application
can be summarised as the following:

¢ Applying the budget constraint to the GA individual, so as
to get a project timetable, as well as the information about
slarting and completing years {or each project selected;

»  Calculating the discounted contribution to each goal made
by every selected project in the timetable, as indicated by
equation (10

»  Imposing operational constraints and calculating penally
functions, as in equation {12); and

s Fipally calculating fitness function, as indicated by (13}

4. EXPERIMENTS

The date set for the example in section 2 was used for
experiments. The basic data are described as the following.

= 17 erileria were identified for prioritising and scheduding
road projects, and the value for cach goal’s aspiration was
predetermined;

e There were 33 road projects to be prioritised and scheduled,
and the contribution to each goal made by every project
was predetermined;

= The scheduling period is 10 years, the budget available in
each year being predetermined; and

»  Other data and parameters, such as the discount rate.

The reproduction scheme and genetic operators used in the
experiments are combined pairwise tournament selection and
preserving elite scheme, partial mapped crossover, mutation,
and reversion. The detail descriptions of these reproduction
scheme and genetic operators arc shown by Goldberg [1989].

4.1 Experiment 1

In this experiment using the GA, all road projects wer
assumed to be Type | projects, In this case, the problem can
be selved by both GP and a GA.

If a problem can be solved by linear programming, there is no
need to solve it by a GA. The point of applying the GA to
this situation is 1o test the GA’s ability to find the optimum
solution. For this purpose, the optimum solution obtained by
GP was used as a benchmark for the GA’s solutions.

Figure | shows the convergence of objective functions for a
series of GA rans with the same data set. In Figure 1, each
thick line represents the objective funclion for the best GA
individuat with generation number for each run, The value of
abjective function for the optimal solution obtained by GP is
shown in Figure 1 by a thin horizontal dash line. It can be
seen that from about generation 50 the objective functions of
the best GA individuals converge on a value, which is less
than 0.2 per cent above the GP optimum.
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Figare 1: Variation of Objective Function - Experiment |

4.2 Experiment 2

in experiment 2 using the GA, road projects were differentiated
intc Type 1 and Type 2 projects. Type 2 projects do not
confer any benefits until completed. In this case, the problem
can only be solved by a GA. The information on project type
for seme projects is in the second column of Table 1.

Figure 2 shows the convergences of objective functions for
nine runs with the same data set. The objective functions in
two runs converged on 378837, the lowest value in the nine
Funs.

1 il 21 3 41 St il 71 i &1
HeITRion

Figuare 2: Varintion of Objective Function - Experiment 2

4,3 Result Comparisons

Table | shows the investment allocations for the projects that
were selecled into at least one of the project timetables
cbtained by GP, and by GA experiment 1 and experiment 2.
‘The investment allocation in a year for each project is equal to
the product of the project’s cost multiplied by the project’s
propoertion built in that year.

Theoretically, there should not be any difference between the
solutions by GP and experiment | using the GA. The
differences (the first and second rows for projects 4, 2% and 32}
are because the GA has not fourd the optimum solution so

far, as it is normally clamed that a GA can find 2 near
optimum solution for & preblem. On the other hand, the
differences are in only 3 of the 35 projects or 0.62 per cent of
the total budget for the 10 years, This suggests that the GA
can be applied to the problem with an acceptable accuracy.

As shown in Table 1, different assumptions on project Lypes
in experiment I and experiment 2 do make a difference (the
second and third rows for project 2, 4, 5, 8,9, 13, 21. and 23)
in project timetables. The basic phenomenan in experiment 2
is that the implementation of a Type 2 project {except project
2 inyear 10} is fitted into one year, whereas in experiment |

some Type 2 projects (projects 5 and 13) are split into two
continved years.

Table 1:Investment Allocations Obtained by GP, and by

GA Experiment | {(GA 1} and Experiment 2 (GA 2)
Tovestment Adtooats T 3
No. | Typey 1 2 3 4 5 ft 7 El n
4300
1 1 43K
4300
2 2
158
JOHY
3 1 MY
| M3
4 1 159
6147 1553
s |2 G147 1553
T
Fla(l 4260
L 1 F139 426t
P13 4261
231t
g 2 2308
230
TR
Y 1 TR
5247 2531
HT 13
il T HE7 13
6087 b3
Bl
il 2 6K}
HOIKY
LU S L]
13 2 2w0d 239G
St
EEH]
14 2 3400
A
15650
13 H 15630
15650}
120
i6 1 126MX
120K
14694 11706
17 1 4604 1ETU00
463 TETHE
BETE 1H0SE 18954 [ROS4 WdeT
L] 1 R6TO IROSY  LHOST  BRUS3 wdas
BET0 18053 18053 [B9S3 946l
Ok}
21 pd O}
9K
15043
23 i 1504}
503 907
St
15 1 5301
SR
mn 2 1
HHO
TG
31 2 750
TR
1169
iz 2 GAl
GAZ2
@ 999
s |Gl 999
GA 2 Y

“ The projects, which were not selected into any one of the
praject timetables obtained by GP, GA 1 and GA Z, are not
listed in the table

b In GP and GA 1, all projects were assumed to be Type f,
the project types listed below are orly applied in GA 2.
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5. CONCLUSIOMS aAMD DISCUSSION

This paper demonsirated that the GA can be used for
prioritising and scheduling road projects, especially in the case
where some projects do not confer any benefits  until
completed.

The GA was used to show that o suing of integers is
appropriate for representing a project priority matrix in a GA
individual, and that budget and operational constraints can be
imposed in the GA by mapping a project priority matrix onto
a project timetable, and using a penalty function. respectively,

Using the optimum solution obtained by GP as a benchmark,
experiment 1 using the GA showed that the GA can find a
near optimum solution at an acceptable computing cost, For
the results reported in this paper, the cost is 6 runs of the GA,
and each run requires about 1 howr, The higher accuracy of
solutions obtained by the GA can be achieved by more runs of
the GA.

Experiment 2 using the (GA showed that when the difference
between Type | and Type 2 projects in the project cffects is
considered, the Type 2 projects selected into a project
timetable are fitted into one year rather than split into more
than one year, because of their delayed benelits. The project
timetable obtained in experiment 2 can be easily modelled by
using a GA, but with difficulty by linear programming.

All experiments reported in this paper sharc & common
assumption. The assumption is that the cffects of each mad
project are only dependent on the project itself, ignoring
whether the other projects will be implemented or not. This
assumption is reflected in the fact that the contribution to each
goal made by every project is predetermined and  fixed.
Thersfore, a further improvement in prioritising and
scheduling road projects can be made by considering the
dependencies between identified road projects in terms of their
effects.

Another improvement can be made by differentiating the
effects of a project into two or more types. For example, the
effects of a project can divided into: the effect that just exists
during the period of implementing the project, such as
disturbance to existing traffic by constructing the project; the
effect that is dependent on traffic and can only be effective after
the project 1s completed, such as savings in travel tme and
vehicle operating costs: and the effect that lasts for ever from
starting implementation of the project, such as the damage to
natural environment.

These possible improvements in prioritising and scheduling
road projects can only be realised by using genetic algorithms
together with road network modelling methods.
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